拾起桌上的圆珠笔,徐川在此前未写完地方提笔继续:
“。设v是复射影空间中的一个代数簇,vˊ是v的正则点组成的集合。vˊ上相对于fubini-study度量的l2-derham上同调群与v的交叉上同调群是同构的。”
“若y是x的定义在k上余维数为j的闭子代数簇,我们有标准映射:tr:h2(nj)(ykk,q)(nj)→q这里(nj)是nj次tatetwistq(nj)。
这个映射与限制映射:h2(nj)(xkk,q)(nj)→h2(nj)(y,q)(nj)”
“。”
“根据poincare对偶定理:hom(h2(nj)(xkk,q)(nj),q)=h2j(xkk,q)(j)“
时间一点一点的在他的笔下流逝,徐川全神贯注的将自己投入到了最后的突破上。
最终,他手中的笔锋蓦然一转。
“。基于映射tr、限制映射和poincare,对偶定理都与gal(kk)的作用相容,所以gal(kk)在y定义的上同调类上的作用也平凡。则aj(x)是h2j(xkk,q)(j)中由x的余维数为j的定义在k上的闭子代数簇的上同调类生成的q向量空间”
“当i≤n2时,ai(x)nker(ln2i+1)上的二次型x→(1)ilr2i(x。x)是正定的。“
“由此,可得,在非奇异复射影代数簇上,任一霍奇类均是代数闭链类的有理线性组合。”
“即,霍奇猜想成立!”
手中圆珠笔在洁白的稿纸上点下最后一个圆点,徐川长舒了一口气,将手中的圆珠笔丢到了一旁,身子往后一躺,靠在了椅背上盯着天花板愣愣的发呆。
当最后一个字符在稿纸上落下的时候,他心里涌出的并不是兴奋,不是高兴,也不是满足感和成就感。
而是带着一些不可置信的迷茫。
耗去长达四个多月的时间,从米尔扎哈尼教授遗留给他的手稿开始,到‘微分代数簇的不可缩分解’问题的解决,再到代数簇与群映射工具的完善,到最后的霍奇猜想的解决。
在这条路上,他经历了太多。
盯着天花板良久,徐川终于回过神来,目光落在了身前书桌上的稿纸上。
将所有的稿纸完整的过了一遍,确定这真的是自己的做出来的成果后,他脸上终于露出了璀璨的笑容,明朗如窗外透进来的阳光。
如果没有意外的话,他,成功了。
成功解决掉了霍奇猜想这个世纪难题。
这是自1924年数学家莱夫谢茨对于(1,1)类的霍奇猜想证明后,和霍奇猜想相关的问题最重要的突破。
尽管他现在还不知道它是否能经得起其他数学家和时间的考验。
但无论如何,他在数学上再次踏出了一大步。
完成证明霍奇猜想的论文之后,徐川又花费了一些时间,将稿纸上的这些东西再度过了一遍,并完善了一些其他的细节。
处理完成这些后,他开始动手将其整理到笔记本中。
而后准备公开。
对于任何一个数学猜想的证明来说,证明者是没有资格给予它是否正确的评价的。
唯有全面公开,且经历同行评审与时间的考验,才能确定它是否真的已经成功。
花费了整整一周的时间,徐川总算是将手中近百页的稿纸全部输入了电脑中。
这上百页的证明,其中有超过三分之一以上的篇幅,是针对解决霍奇猜想的代数簇与群映射工具的解释与论证,还有三分之一的篇幅,是针对霍奇猜想与代数簇与群映射工具搭建的理论框架。
剩下的,才是霍奇猜想的证明过程。
对于这篇论文而言,工具与框架,才是它的核心基础。
如果他愿意,完全可以将工具和理论框架单独拆分出来作为独立的论文进行发表。
www。biqizw。com比奇中文