主要原因就是材料技术不过关!
这一切都要从热核聚变的基本原理说起。
现在比较常见的热核聚变是将轻核(主要是氢的同位素氘和氚)加热到数亿度高温,使其聚合成较重的原子核,同时释放出巨大能量的过程,太阳的发光发热和氢弹爆炸就是这样的原理。
聚变能的特点是:第一,聚变反应释放出大量的能量,一升海水中的氘通过聚变反应可释放出相当于300升汽油燃烧的能量。
第二,聚变资源储量十分丰富,地球上海水中所含的氘,如果用于氘氘聚变反应可供人类用上亿年,而用于产生氚的锂在地球上也有比较丰富的储量,可供人类用于聚变反应几万年。
第三,聚变的反应产物是比较稳定且无放射性的氦。考虑聚变能固有的安全性、环境的优越性、燃料资源的丰富性,聚变能被认为是人类最理想的洁净能源。
那问题来了。
如何让这两个轻核进行聚合反应呢?
要使两个原子核发生聚变反应,必须使它们彼此靠得足够近,达到原子核内核子与核子之间核力的作用距离,此时核力才能将它们“粘合”成整体形成新的原子核。
据实验资料估计,要使两个氘核相遇,它们的相对速度必须大于每秒1000公里。此时单个氘核具有巨大的动能,对于一团氘核整体而言,则具有极高的温度。
两个氘核产生聚变反应时,温度必须高达几亿度。氘核与氚核间发生聚变反应时,温度也须达到一亿度以上。这种在极高温度下才发生的聚变核反应也称热核反应。
在如此高温下,物质已全部电离,形成高温等离子体。开发利用核聚变能源首先必须产生一团高达上亿度的高温等离子体。
那问题又来了,如何让这两个氘核原子进行高效、稳定、可控的碰撞,也就是将核聚变进行可控化呢?
那就只有一个方法,那就是充分的约束。
这个方法是指将高温等离子体维持相对足够长的时间,以便充分地发生聚变反应,释放出足够多的能量,使聚变反应释放的能量大于产生和加热等离子体本身所需的能量及其在此过程中损失的能量。
这样,利用聚变反应释放出的能量就可以维持所需的极高温度,无需再从外界吸收能量,聚变反应就能够自持进行。
但想要达到这种技术的使用前提,就必须先要达到极高的温度。
上亿的温度!
只要温度足够高!等离子体的热运动速度就会越快!
但光速度快还不行,因为热疗离子像无头苍蝇一样到处乱撞的话,这样的效率还是非常的低,没有办法达到高效、稳定的聚变!
所以还必须使用其他方法,来保证这些等离子体能够按照我们想象的方向进行运动,从而有效的增加反应的几率。
这也是可控核聚变目前为止最核心的技术。